Bending, buckling and free vibration responses of hyperbolic shear deformable FGM beams
Authors
Abstract:
This study investigated bending, buckling, and free vibration responses of hyperbolic shear deformable functionally graded (FG) higher order beams. The material properties of FG beams are varied through thickness according to power law distribution; here, the FG beam was made of aluminium/alumina, and the hyperbolic shear deformation theory was used to evaluate the effect of shear deformation in the beam. The theory explains the hyperbolic cosine distribution of transverse shear stress through the thickness of a beam and satisfies zero traction boundary conditions on the top and bottom surfaces without requiring a shear correction factor. Hamilton’s principle was employed to derive the equations of motion, and analytical solutions for simply supported boundary conditions were obtained using Navier’s solution technique. The non-dimensional displacements, stress, natural frequencies, and critical buckling loads of FG beams were obtained for various values of the power law exponent. The numerical results were compared to previously published results and found to be in excellent agreement with these.
similar resources
On Static Bending, Elastic Buckling and Free Vibration Analysis of Symmetric Functionally Graded Sandwich Beams
This article presents Navier type closed-form solutions for static bending, elastic buckling and free vibration analysis of symmetric functionally graded (FG) sandwich beams using a hyperbolic shear deformation theory. The beam has FG skins and isotropic core. Material properties of FG skins are varied through the thickness according to the power law distribution. The present theory accounts fo...
full textNumerical free vibration analysis of higher-order shear deformable beams resting on two-parameter elastic foundation
Free vibration analysis of higher-order shear deformation beam resting on one- and two-parameter elasticfoundation is studied using differential transform method (DTM) as a part of a calculation procedure. First,the governing differential equations of beam are derived in a general form considering the shear-freeboundary conditions (zero shear stress conditions at the top and bottom of a beam). ...
full textThermomechanical Buckling of Temperature- dependent FGM Beams
Functionally graded materials, as a branch of new materials, have attracted increasing attention in recent years. A survey in the literature reveals the existence of wealth investigations on analysis of functionally graded material beams. Among them, Kang and Lee [1] presented explicit expressions for deflection and rotation of an FGM cantilever beam subjected to an end moment. Considering the ...
full textnumerical free vibration analysis of higher-order shear deformable beams resting on two-parameter elastic foundation
free vibration analysis of higher-order shear deformation beam resting on one- and two-parameter elasticfoundation is studied using differential transform method (dtm) as a part of a calculation procedure. first,the governing differential equations of beam are derived in a general form considering the shear-freeboundary conditions (zero shear stress conditions at the top and bottom of a beam). ...
full textRitz Method Application to Bending, Buckling and Vibration Analyses of Timoshenko Beams via Nonlocal Elasticity
Bending, buckling and vibration behaviors of nonlocal Timoshenko beams are investigated in this research using a variational approach. At first, the governing equations of the nonlocal Timoshenko beams are obtained, and then the weak form of these equations is outlined in this paper. The Ritz technique is selected to investigate the behavior of nonlocal beams with arbitrary boundary conditions ...
full textBuckling Analysis of Embedded Nanosize FG Beams Based on a Refined Hyperbolic Shear Deformation Theory
In this study, the mechanical buckling response of refined hyperbolic shear deformable (FG) functionally graded nanobeams embedded in an elastic foundation is investigated based on the refined hyperbolic shear deformation theory. Material properties of the FG nanobeam change continuously in the thickness direction based on the power-law model. To capture small size effects, Eringen’s nonlocal e...
full textMy Resources
Journal title
volume 5 issue 1
pages 13- 24
publication date 2018-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023